4,411 research outputs found

    Development of a Computationally Efficient Fabric Model for Optimization of Gripper Trajectories in Automated Composite Draping

    Full text link
    An automated prepreg fabric draping system is being developed which consists of an array of actuated grippers. It has the ability to pick up a fabric ply and place it onto a double-curved mold surface. A previous research effort based on a nonlinear Finite Element model showed that the movements of the grippers should be chosen carefully to avoid misplacement and induce of wrinkles in the draped configuration. Thus, the present study seeks to develop a computationally efficient model of the mechanical behavior of a fabric based on 2D catenaries which can be used for optimization of the gripper trajectories. The model includes bending stiffness, large deflections, large ply shear and a simple contact formulation. The model is found to be quick to evaluate and gives very reasonable predictions of the displacement field

    Dressed matter waves

    Full text link
    We suggest to view ultracold atoms in a time-periodically shifted optical lattice as a "dressed matter wave", analogous to a dressed atom in an electromagnetic field. A possible effect lending support to this concept is a transition of ultracold bosonic atoms from a superfluid to a Mott-insulating state in response to appropriate "dressing" achieved through time-periodic lattice modulation. In order to observe this effect in a laboratory experiment, one has to identify conditions allowing for effectively adiabatic motion of a many-body Floquet state.Comment: 9 pages, 4 figures, to be published in: J. Phys.: Conference Serie

    The role of real-space micromotion for bosonic and fermionic Floquet fractional Chern insulators

    Full text link
    Fractional Chern insulators are the proposed phases of matter mimicking the physics of fractional quantum Hall states on a lattice without an overall magnetic field. The notion of Floquet fractional Chern insulators refers to the potential possibilities to generate the underlying topological bandstructure by means of Floquet engineering. In these schemes, a highly controllable and strongly interacting system is periodically driven by an external force at a frequency such that double tunneling events during one forcing period become important and contribute to shaping the required effective energy bands. We show that in the described circumstances it is necessary to take into account also third order processes combining two tunneling events with interactions. Referring to the obtained contributions as micromotion-induced interactions, we find that those interactions tend to have a negative impact on the stability of of fractional Chern insulating phases and discuss implications for future experiments.Comment: 13 pages, 7 figure

    Describing many-body localized systems in thermal environments

    No full text
    In this work we formulate an efficient method for the description of fully many-body localized systems in weak contact with thermal environments at temperature T. The key idea is to exploit the representation of the system in terms of quasi-local integrals of motion (l-bits) to efficiently derive the generator for the quantum master equation in Born-Markov approximation. We, moreover, show how to compute the steady state of this equation efficiently by using quantum-jump Monte-Carlo techniques as well as by deriving approximate kinetic equations of motion. As an example, we consider a one-dimensional disordered extended Hubbard model for spinless fermions, for which we derive the l-bit representation approximately by employing a recently proposed method valid in the limit of strong disorder and weak interactions. Coupling the system to a global thermal bath, we study the transport between two leads with different chemical potentials at both of its ends. We find that the temperature-dependent current is captured by an interaction-dependent version of Mott's law for variable range hopping, where transport is enhanced/lowered depending on whether the interactions are attractive or repulsive, respectively. We interpret these results in terms of spatio-energetic correlations between the l-bits

    Quantum simulation of frustrated magnetism in triangular optical lattices

    Full text link
    Magnetism plays a key role in modern technology as essential building block of many devices used in daily life. Rich future prospects connected to spintronics, next generation storage devices or superconductivity make it a highly dynamical field of research. Despite those ongoing efforts, the many-body dynamics of complex magnetism is far from being well understood on a fundamental level. Especially the study of geometrically frustrated configurations is challenging both theoretically and experimentally. Here we present the first realization of a large scale quantum simulator for magnetism including frustration. We use the motional degrees of freedom of atoms to comprehensively simulate a magnetic system in a triangular lattice. Via a specific modulation of the optical lattice, we can tune the couplings in different directions independently, even from ferromagnetic to antiferromagnetic. A major advantage of our approach is that standard Bose-Einstein-condensate temperatures are sufficient to observe magnetic phenomena like N\'eel order and spin frustration. We are able to study a very rich phase diagram and even to observe spontaneous symmetry breaking caused by frustration. In addition, the quantum states realized in our spin simulator are yet unobserved superfluid phases with non-trivial long-range order and staggered circulating plaquette currents, which break time reversal symmetry. These findings open the route towards highly debated phases like spin-liquids and the study of the dynamics of quantum phase transitions.Comment: 5 pages, 4 figure

    Tunneling control and localization for Bose-Einstein condensates in a frequency modulated optical lattice

    Full text link
    The similarity between matter waves in periodic potential and solid-state physics processes has triggered the interest in quantum simulation using Bose-Fermi ultracold gases in optical lattices. The present work evidences the similarity between electrons moving under the application of oscillating electromagnetic fields and matter waves experiencing an optical lattice modulated by a frequency difference, equivalent to a spatially shaken periodic potential. We demonstrate that the tunneling properties of a Bose-Einstein condensate in shaken periodic potentials can be precisely controlled. We take additional crucial steps towards future applications of this method by proving that the strong shaking of the optical lattice preserves the coherence of the matter wavefunction and that the shaking parameters can be changed adiabatically, even in the presence of interactions. We induce reversibly the quantum phase transition to the Mott insulator in a driven periodic potential.Comment: Laser Physics (in press

    Tunable gauge potential for neutral and spinless particles in driven lattices

    Full text link
    We present a universal method to create a tunable, artificial vector gauge potential for neutral particles trapped in an optical lattice. The necessary Peierls phase of the hopping parameters between neighboring lattice sites is generated by applying a suitable periodic inertial force such that the method does not rely on any internal structure of the particles. We experimentally demonstrate the realization of such artificial potentials, which generate ground state superfluids at arbitrary non-zero quasi-momentum. We furthermore investigate possible implementations of this scheme to create tuneable magnetic fluxes, going towards model systems for strong-field physics

    Epitaxial growth of deposited amorphous layer by laser annealing

    Get PDF
    We demonstrate that a single short pulse of laser irradiation of appropriate energy is capable of recrystallizing in open air an amorphous Si layer deposited on a (100) single-crystal substrate into an epitaxial layer. The laser pulse annealing technique is shown to overcome the interfacial oxide obstacle which usually leads to polycrystalline formation in normal thermal annealing

    Increased plasma viscosity as a reason for inappropriate erythropoietin formation

    Get PDF
    The aim of this study was to examine whether altered plasma viscosity could contribute to the inappropriately low production rate of erythropoietin (EPO) observed in patients suffering from hypergammaglobulinemias associated with multiple myeloma or Waldenström's disease. We found that the EPO formation in response to anemia in these patients was inversely related to plasma viscosity. A similar inverse relationship between plasma viscosity and EPO production was seen in rats in which EPO formation had been stimulated by exchange transfusion and the plasma viscosity of which was thereby altered by using exchange solutions of different composition to alter plasma viscosity and thus whole blood viscosity independently from hematocrit. Raising the gammaglobulin concentration to approximately 40 mg/ml plasma in the rats almost totally blunted the rise in serum EPO levels despite a fall of the hematocrit to 20%. Determination of renal EPO mRNA levels by RNase protection revealed that the reductions in serum EPO levels at higher plasma viscosities were paralleled by reductions in renal EPO mRNA levels. Taken together, our findings suggest that plasma viscosity may be a significant inhibitory modulator of anemia-induced EPO formation. The increased plasma viscosity in patients with hypergammaglobulinemias may therefore contribute to the inappropriate EPO production, which is a major reason for the anemia developing in these patients
    corecore